Natural factors of the Medvedev lattice capturing IPC
نویسندگان
چکیده
منابع مشابه
Natural factors of the Medvedev lattice capturing IPC
Skvortsova showed that there is a factor of the Medvedev lattice which captures intuitionistic propositional logic (IPC). However, her factor is unnatural in the sense that it is constructed in an ad hoc manner. We present a more natural example of such a factor. We also show that the theory of every non-trivial factor of the Medvedev lattice is contained in Jankov’s logic, the deductive closur...
متن کاملNatural factors of the Muchnik lattice capturing IPC
We give natural examples of factors of the Muchnik lattice which capture intuitionistic propositional logic (IPC), arising from the concepts of lowness, 1-genericity, hyperimmune-freeness and computable traceability. This provides a purely computational semantics for IPC.
متن کاملIntermediate logics and factors of the Medvedev lattice
We investigate the initial segments of the Medvedev lattice as Brouwer algebras, and study the propositional logics connected to them.
متن کاملTopological aspects of the Medvedev lattice
We study the Medvedev degrees of mass problems with distinguished topological properties, such as denseness, closedness, or discreteness. We investigate the sublattices generated by these degrees; the prime ideal generated by the dense degrees and its complement, a prime filter; the filter generated by the nonzero closed degrees and the filter generated by the nonzero discrete degrees. We give ...
متن کاملOn the structure of the Medvedev lattice
We investigate the structure of the Medvedev lattice as a partial order. We prove that every interval in the lattice is either finite, in which case it is isomorphic to a finite Boolean algebra, or contains an antichain of size 2 א0 , the size of the lattice itself. We also prove that it is consistent that the lattice has chains of size 2 א0 , and in fact that these big chains occur in every in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Mathematical Logic
سال: 2014
ISSN: 0933-5846,1432-0665
DOI: 10.1007/s00153-014-0393-8